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Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator
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We propose a quantum description of the cooling of a micromechanical flexural oscillator by a one-
dimensional transmission line resonator via a force that resembles cavity radiation pressure. The mechanical
oscillator is capacitively coupled to the central conductor of the transmission line resonator. At the optimal
point, the micromechanical oscillator can be cooled close to the ground state, and the cooling can be measured

by homodyne detection of the output microwave signal.
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I. INTRODUCTION

Micromechanical and nanomechanical resonators have
been an interesting research topic due to their broad applica-
tion in technology and fundamental physics.! This includes
studies of ultrahigh precision displacement detection,> mass
detection,? gravitational-wave detectors,*® and attempts to
observe quantum behavior of mechanical motion.®~'® Many
of the applications are fundamentally limited by thermal
fluctuations; and in order to reduce their effects, it is desir-
able to cool the mechanical oscillators. Recently, various
schemes such as the laser sideband cooling schemes devel-
oped for trapped ions and atoms'!' have been proposed for
significantly cooling a mechanical resonator (MR) coupled to
a Cooper-pair box,'>15 a flux qubit,'®!” a superconducting
single-electron transistor,'® quantum dots," trapped ions,?°
and optical cavities.?!° On the experimental side, optom-
echanical cooling schemes have been shown to be
promising.”'~?® The MR was cooled to ultralow temperatures
via either photothermal forces or radiation pressure by cou-
pling it to a driven cavity. There are two main optomechani-
cal cooling schemes. The first one involves an active feed-
back loop?*?-3% and the second one works via passive back-
action cooling (also called self-cooling).?>?32326 A fully
quantum-mechanical description of cavity-assisted cooling
schemes for optomechanical systems has been given in Refs.
32-37 (for a review, see Refs. 38 and 39). Ground-state cool-
ing of a mechanical resonator via passive cooling schemes
based on radiation pressure has also been investigated
theoretically,333436.37

Recently, other optomechanical-like cooling schemes
have been proposed to replace the optical cavity by a radio-
frequency (RF) circuit*®*! or a one-dimensional transmission
line resonator (TLR).*> However, the theoretical understand-
ing of the cooling schemes via a RF circuit in Refs. 40 and
41 or via a TLR in Ref. 42 is based on a classical description
of the motion of the MR. A quantum-mechanical description
of the motion of the MR, in a similar system consisting of a
mechanical resonator capacitively coupled to a supercon-
ducting coplanar waveguide (which is an example of a TLR),
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was discussed recently in Ref. 43, which focused on studying
the entanglement between the MR and the TLR without con-
sidering the cooling of MR. Most recently, Teufel et al.**
considered the cooling of a MR by applying directly the
theoretical analysis of the cavity-assisted back-action cooling
scheme®* to a superconducting microwave resonator. They
also presented experimental data about the cooling effect on
the MR due to the microwave radiation field. The quantum-
mechanical description of TLR-assisted cooling of a MR has
also been investigated in Ref. 45 via embedding a supercon-
ducting quantum interference device (SQUID),*® which al-
lows to control the coupling strength between MR and TLR
by controlling the flux through the SQUID.

There are some practical advantages*’*® in the microwave
TLR schemes. The TLR is realized in a thin on-chip super-
conducting film and is easily precooled by standard dilution
refrigeration techniques. It is ready to be integrated with
quantum circuits containing Josephson junctions which may
offer a sensitive measurement and a connection with quan-
tum information processing. In addition, the size of the me-
chanical resonator could be much smaller than the wave-
length of the radiation in the TLR unlike in optical-cavity
experiments that work with reflection.

In this paper, we present a quantum-mechanical descrip-
tion and use it to investigate the motion of the MR when it is
coupled capacitively to a driven TLR as in Ref. 42 where the
calculation was carried out in a semiclassical framework.
The Hamiltonian of our TLR-assisted model is also studied
in Refs. 43 and 44 and is very similar to that of a MR
coupled to a driven optical cavity via radiation-pressure
coupling.3>3° We study the TLR-assisted passive back-action
cooling of a MR in detail by using a quantum Langevin
description  (without taking into account quantum
entanglement*® between the MR and the TLR). One of the
main results of our work is that we are able to show that the
MR can be cooled close to its ground state using realistic
parameters: final effective mean phonon numbers below 1
can be reached assuming an initial temperature of 10 mK
which can be achieved using a dilution refrigerator. We dis-
cuss in detail how such a ground-state cooling of the MR can
be obtained for all kinds of parameter choices in practice.
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FIG. 1. (Color online) Schematic of a MR located at the center
of a one-dimensional TLR. The external microwave drive field en-
ters from the left and drives the TLR. The signal at the output on the
right end can be used to measure the motion of the MR via homo-
dyne detection (Refs. 32, 44, 47, and 49).

II. MODEL AND HAMILTONIAN

The system that we consider is shown schematically in
Fig. 1. A MR is fixed on both ends (or a cantilever fixed on
one end) located at the center of the TLR and is coupled
capacitively to the central conductor of the TLR.® We re-
strict the description to the fundamental flexural mode of
oscillation of the MR which is modeled as a harmonic oscil-
lator of frequency w, and effective mass m. The TLR is
driven by an external microwave at a frequency w, and can
be modeled as a single-mode LC resonator with frequency
w,=1/ VL,C, (the second mode of the TLR)' where L, is
the inductance and C, the capacitance of the TLR.

The Hamiltonian of the system reads

+ 2 o’ C
H=ﬁwéa‘a+<p—+—bx2 —g@V2
2m 2 2
+h(ea’e™@d + g*gel@d). (1)

The first three terms describe the free Hamiltonian of the
TLR (first term) and the MR (second and third terms), re-
spectively, with lowering (rising) operator of the TLR mode
a (a’) and the position (momentum) operator of the MR x
(p) which satisfy [a,a"]=1 and [x,p]=i%. The fourth term is
the capacitive coupling between the TLR and the MR. Actu-
ally, it describes the capacitive energy between them. The
MR and the TLR are assumed to form a capacitor with the
capacitance C,(x)~ Cg(l —x/d) (for small displacement) de-
pending on the position of the MR along the x direction [d is
the initial equilibrium distance without the coupling and Cg
is the corresponding initial capacitance; typically, d
~1 um (Ref. 47)]. The capacitor is assumed to be placed in
the center of the structure; i.e., its voltage is given by the
antinode voltage of the second mode V=V, (a+a) (where
Vims=Vho!/C, is the rms voltage)™ since the length of the
MR is usually much shorter than that of the TLR: L~cm
>[~10-100 wm. The last term in Eq. (1) describes the
input driving of the TLR by an external microwave field with
the coupling strength?>3%% |g|=\2kP/hw], where « is the
decay rate of the TLR and P is the input external microwave
drive power. Here, the nonrotating wave terms such as
ae?d" and a'e’“d have been ignored since we keep |
<w,~ w,

Usually, the fundamental oscillation frequency is of the
order of 277X (10°~10°) Hz for micromechanical resonators
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and 27X (10’=10°) Hz for nanomechanical resonators; the
TLR frequency can be made to be of the order of 2w
X 10 GHz. Here we will focus on the case of a micro-MR
for which the condition w;, < w), is satisfied. In the interaction
picture with respect to Aiwya'a and neglecting the rapidly
oscillating terms, the Hamiltonian reads

. 2 me? h
H1=1*LA0a’a+<p—+ﬁx2 —ﬁ(ZaTa+1)x
2m 2 2
+h(ea’ + £a), (2)

where go:= CV2_/(#id) is a real coupling constant, Ay=w,

rms
—wy is the deftuning, and w,=w,+C°V2 /# is the modified
frequency of the TLR shifted by the coupling between TLR
and MR.

This Hamiltonian resembles that used in cavity-assisted
cooling schemes.?7 This suggests that the capacitive-
coupling scheme in a microwave TLR can be used to cool
the MR like in the case of radiation-pressure cooling in an

optical cavity.

III. QUANTUM LANGEVIN EQUATIONS AND FINAL
MEAN PHONON NUMBER

The dynamics is also determined by fluctuation-
dissipation processes that affect both the TLR and the
mechanical mode. They are taken into account in a fully

consistent way by the quantum Langevin equations’?
xX=plm, (3a)
. 2 figo +
p=—mwbx—'ybp+7(2a a+1)+¢, (3b)
d=—(k+iAy)a+igpax+¢e+ v’ﬂain. (3¢)

Here a;, (aiTn) is the noise operator due to the external micro-

wave drive and &(r) denotes the quantum Brownian force that
the resonator is subjected to. They satisfy>?

(ap(al,(t) = (N+1)8(t-1"), (4)

hiw
2kBT)’ ®)

where N=1/[exp(fiw,/kzT)—1] is the mean number of ther-
mal microwave photons of the TLR, kg is the Boltzmann
constant, 7 is the temperature of the environment, and v, is
the damping rate of the MR. For simplicity, we have as-
sumed that both the bath correlated with the external micro-
wave drive field and the one connected to the MR have the
same temperature.*> We now perform a similar calculation as
that given in Refs. 32, 36, 37, and 53. The steady-state solu-
tion of the quantum Langevin Egs. (3) can be obtained by
first replacing the operators by their average and then setting
d(...)/dt=0. Hence we can get the steady-state values as

(ED)&(t'))y = ﬁ;/—bmf dw e_"“’(’_’,)w<l + coth
T
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=0, ") e
b

where A=A,—gy(x) is the effective detuning. In Eq. (6), we
can also take [(a)|>+ 3 = |(a)|? since we will focus on the case
[{a)|>1 which can be achieved by controlling the input
power of the external microwave drive.

Rewriting each operator as a c-number steady-state value
plus an additional fluctuation operator and neglecting the
nonlinear terms (since we have chosen |(a)|> 1), we obtain a
set of linear quantum Langevin equations [see Egs.(A1)] and
then solve for the spectrum of the position and momentum of
the MR as in Refs. 32, 36, 37, and 53; see the Appendix.

Using the fluctuation spectra of the MR as given in Egs.
(A10) and (A11), we can define the final mean phonon num-

ber in the steady state as®®
() Lo
nj= 5 (e - (7)
Zﬁmwb

where the variances of position and momentum are

1 (*
(6r%) = —f S(w)dw, (r=x,p). (8)
27 )
This allows us to define the effective temperature 7. as
Typ= 1) ( ! 1) 9)
=—In"({—+1).
eff = kB nJ;

In Sec. IV, we will consider the cooling of the MR by
discussing its final effective mean phonon number (or,
equivalently, its effective temperature) in detail.

IV. COOLING OF THE MR

The final effective mean phonon number of the MR can
be calculated directly by evaluating the integral in Eq. (8)
numerically and using Eq. (7). Alternatively, instead of being
evaluated directly, Eq. (8) can also be evaluated analytically
using the approximation scheme described in the following

The effective mechamcal damping rate 7} M(w)= YV
+Yea t(w)| > Vbs when
lgo(a)]| is very large [see Eq. (A16)]. Let us con51der the most
interesting regime when the significantly increased effective
mechanical damping rate is less than the mechanical fre-
quency, (w)|<wb, [that is, the effective quality factor
Q¢ —wb/|y§’, f(w)|>1] and also less than the decay rate of
£ w)| < k33343754 In this regime, the effective fre-
quency is unchanged " (w)=w, (Refs. 36 and 55) accord-
ing to Eq. (A15) and the effective susceptibility is peaked
around the points w= * wi"(w) = * w,. Then one can get an
approximate expression for the variance

&) =
(@ 2m2w,2,| Vb

(10)

where the effective thermal noise spectrum S[’h(w) and the
induced noise spectrum S/ (w) are the symmetrized parts of
Sin(w) and S, (w), respectively,
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FIG. 2. (Color online) Variance of position {(&x?) in units of
h/mw, as a function of effective detuning A. The dashed lines are
obtained by numerically evaluating the integral in Eq. (8). The solid
lines are obtained by using the approximate expression (10). Here,
T=6X 103w,/ kg, go=3X 107 w,Vmwy/th, w,=2%X10*w;, £=2.5
X 103w, ¥,=0.25X 10"*w,, and k=w,, (upper lines) or xk=0.2w,
(lower lines).

Sp(w) =fiymo cothszT, (11)
20 A2+ o?
S!,(@) = N + Dfim™ C ). (12)
2A
Similarly, one can obtain
(3p?) = (may)*(ox%). (13)

Figure 2 shows the variance of position (&x?) as a func-
tion of the effective detuning A. The dashed lines correspond
to a numerical evaluation of the integral in Eq. (8). The solid
lines describe the approximate results obtained through Eq.
(10) which can be seen to agree perfectly with the exact
numerical evaluation. We checked that this is also the case
for the variance of the momentum {8p?).

In Eq. (10), the induced noise spectrum S,,(w,) increases
(heats) the motion of the MR. On the other hand, when the
T(wp)| > y;, the me-
chanical motion will reduce and that means cooling. Math-
ematically, the cooling effect would dominate the heating
effect when the effective damping rate is sufficiently in-
creased. Actually, this is right when the significantly in-
creased effective damping rate is positive for positive detun-
ing. However, it is not the case when v} (wb) is negative and
|y, (w,)|> v, (for negative detuning A <0). That is because
the stability conditions derived using Ref. 56 are satisfied
only for positive detuning.’>>337 In fact, a negative effective
damping means that the amplitude motion of the MR will be
amplified which will lead to an instability.38-60

In what follows, we will focus on the case of positive
detuning A>0. According to Egs. (7), (10), and (13), one
has

nf _ Yoltp + yc‘a(wb)nca

= , (14)
P Yt Yealwy)

where
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Smlwp) 1 1
exp(hwy/kgT) — 1

(15)

" 2hmy,w, 2

is the initial mean thermal excitation phonon number of the
MR and

2N+1
4wa

Neg = (K2+A2+w,2,)—% (16)
is the induced mean phonon number due to the capacitive
coupling between the MR and the TLR.

As discussed above, the significant reduced value of n]; in
Eq. (14) can only be obtained when the additional damping
rate y,(w,) [or effective damping rate y;"(w),)] is positive
and much larger than the original one (but still less than the
decay rate of TLR and less than the frequency of the MR as
discussed before),

Vb < 7ca(wb) < (wb’K)- (17)

This can be satisfied by enhancing the value of |gy(a)|, that
is, by controlling the capacitive-coupling strength g, and in-
creasing the external microwave drive power P to make ||
large (equivalently, |{(a)| will be large). In practice, the
capacitive-coupling strength g, would be limited by the re-
alistic system, and the external microwave drive strength &
would also be limited according to the validity of the rotating
wave approach as we mentioned before. Here we put the
length of the MR [ as large as 10—100 um and the distance
between the MR and TLR d as small as | um (see Fig. 1) in
order to get a large capacitance C° which will lead to large g,
and fix |e|=w,/8 for all the numerical calculations. Then for
a significantly increased effective damping rate, the final
mean phonon number reduces to

Yo
’)/ca( wb)

nj = ny+ Ny (18)
In order to get the ground-state cooling, that is, n£< 1, both
neq and n,y,/ v..(w,) should be much less than 1. Especially,
if y.,(w,) is significantly increased enough to make

Yo'l < ’)/ca(wb)nca’ (19)
then nﬁ approaches the limit 7.,
nh— n,. (20)

Now we discuss the possible minimal value of n., by
discussing all kinds of parameters, e.g., k, A, and N. From
Eq. (16), it is obvious that the optimal value of « satisfies the
high-quality cavity limit

K< wi, (21)

and the optimal detuning satisfies A=+ wi+ K= wj,. Then the
corresponding induced mean phonon number 7., is

2
K
N =N+—. (22)
4w,
The optimal N needs a sufficiently low initial temperature
of the bath which is limited in practice to the experimental
dilute refrigerator temperatures. For the superconducting
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FIG. 3. (Color online) Final mean phonon number in the steady
state né vs effective detuning A and decay rate « of the TLR (T
=3 X 10*hw,/kg; for the other parameters, see Fig. 2).

TLR scheme, its microwave frequency is of the order of
27X 10'° Hz. For the initial temperature T=1 K, kgT
=hw, and N= 1, the ground-state cooling of the MR is not
possible. Therefore, an initial temperature of less than 100
mK is required to achieve ground-state cooling.

Our result on the limiting value in Eq. (22) is consistent
with that in other optical schemes except the limit of initial
temperatures. In the optical-cavity case fiw,>kgT (even at
room temperature) and therefore N=0. The optimal value of
n., becomes

K2

~— 23
4(1)% @3)

nca
which is just the case of resolved sideband cooling as dis-
cussed in the optomechanical cooling schemes.?>2325:26.28
We would like to point out that these references also mention
another cooling limit: the Doppler cooling limit, which is
realized in our system when N=0, A=\w;+x% and
>w127 in Eq. (16);

K
e~ — > 1. (24)
2(1)b
On the other hand, if N> K2/4wi, the induced mean phonon
number n,, in Eq. (22) becomes n,,— N. In the classical
limit when the initial temperature is so high that N
~kgT/(hw,) > 1, one has

eft _Zh Rea D (25)

which is also given in Ref. 31. The Doppler cooling limit in
Eq. (24) and the classical cooling limit in Eq. (25) preclude
ground-state cooling. We will focus on the resolved sideband
cooling in this paper.

The final mean phonon number ni is plotted as a function
of the effective detuning A and the decay rate « of the TLR
in Fig. 3. It is clear that one can obtain a significant suppres-
sion of the mechanical motion of the MR in the positive
detuning range A= w,. The optimal cooling is obtained for
K< wg, which agrees with both the above analysis and that
in other treatments of radiation-pressure cooling.?%23-2%.2642

Physically, as discussed in the back-action optomechani-
cal cooling schemes in optical cavities,?3-3*363757 the exter-
nal driving microwave is scattered by the “TLR+MR” sys-
tem mostly to the first Stokes sideband (w,;— w),) and the first
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anti-Stokes sideband (w;+ ;). The generation of an anti-
Stokes photon will cool the MR by taking away a phonon of
the MR. On the contrary, the generation of a Stokes photon
will heat the MR by creating a phonon. When the effective
detuning A>0, the microwave field of the TLR (with the
frequency w,= w,;+Ay=~ w,+A) interacts with the first anti-
Stokes sideband (w,+ w;,) more than it interacts with the first
Stokes sideband (w,;— wj,) and cooling will occur. This is the
physical reason why the positive effective detuning (A>0)
will lead to cooling. In the high-quality cavity limit k< w,,
the anti-Stokes (Stokes) sideband is resolved and the corre-
sponding cooling (heating) process is prominent. Especially,
for the optimal effective detuning A = w,, the frequency of
the TLR is resonant with that of the anti-Stokes sideband,
which will apparently lead to optimal cooling. This physical
discussion is consistent with the calculation presented above.

Figure 3 suggests that there is a finite optimal value of «
for a fixed effective detuning. That is because one should
have both a small value of n., and a large effective damping
rate y,.,(w,) in order to get strong cooling. x should not be
too large since n,, depends somewhat on the value of «*/ wi
and « should not be too small since vy,,(w,)—0 when
—0.%! In the cooling process, the thermal energy of the MR
is mainly first transferred to the TLR and then leaks out of
the TLR through the bath coupled to the TLR. When the
decay rate of the TLR is too small, k— 0, the energy leakage
out of the TLR is too weak and one could not obtain a strong
cooling.

We would like to emphasize that the results shown in Fig.
3 are based on the approximate expressions Egs. (10) and
(13), where the condition of the so-called weak-coupling
limit’*** has been assumed; that is, the effective damping
rate of the MR should be always less than the decay rate of
the cavity and less than the frequency of the MR, |¥"(w,)|
< k,w;,. Normally the weak coupling is satisfied but not in
some special cases. In Fig. 4(b), the weak-coupling condition
is violated when «/w;, <0.1 at the optimal effective detuning
A=w,. Beyond the weak-coupling limit, Fig. 4(a) shows that
the approximate treatment through Egs. (10) and (13) ceases
to be valid. Then one should discuss the cooling, e.g., effec-
tive mean phonon number in Eq. (7), by using the numerical
evaluation of the integral in Eq. (8). But going beyond the
weak-coupling limit, the contribution from the position vari-
ance is not equivalent to that from the momentum variance
any more.’® In other words, the energy equipartition is not
satisfied. That means it is hard to define an effective tempera-
ture since it is not in a strict thermal state.

According to the above analysis, both the high-quality
cavity and weak-coupling limit should be satisfied, so the
optimal decay rate of the TLR is better taken to be «
~0.lw, for the typical parameters in Fig. 4. The weak-
coupling condition depends only weakly on the initial tem-
perature T and the original damping rate of the MR v, in the
cooling process. In what follows, we will consider the opti-
mal decay rate at k=~0.lw, for different parameters 7" and
v, for which the weak-coupling limit is always satisfied.

In Fig. 5, the ratio of final effective temperature 7 to
bath temperature 7 is plotted as a function of the effective
detuning A for the optimal k=0.1w,. Apparently, here the
weak-coupling limit is satisfied (according to the above
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FIG. 4. (Color online) (a) Optimal final mean phonon number
obtained by numerically evaluating the integral in Eq. (8) (dashed
line) or using the approximate expression in Egs. (10) and (13)
(solid line) as a function of k at the optimal effective detuning A
=wy. (b) Logarithm of the ratio of the corresponding effective
damping rate ysz(wb) to k as a function of k. Here, T=3
X 103w,/ kp. For the other parameters, see Fig. 2.

analysis in Fig. 4). For initial temperatures 7=100, 30, and
10 mK, the corresponding initial mean phonon numbers are
ny=1/[exp(fiw,/ kgT)—1]=kpT/fhw,=3300, 980, and 330
with the final mean phonon number n’;z 1.6, 0.5, and 0.16,
respectively. It is obvious that a significant cooling of the
MR is obtained and lower initial temperatures will generally
lead to better cooling. For an initial temperature 7=10 mK,
which can be realized experimentally by using a dilution
refrigerator, the MR (with the frequency w,~4 MHz) can
be cooled close to the ground state since the final mean pho-
non number 7, ~0.16<1.

f ) ‘ ! :
\T=100mK K
nb \‘ | !
3 \ | ;
T=30mK | ! .
\ ! ;
2
T=10mK .

FIG. 5. (Color online) The final mean phonon number vs effec-
tive detuning A for three initial temperatures: 7=10 mK (dotted
lines), T=30 mK (solid lines), and T=100 mK (dot-dashed lines).
Here, x=0.1w, m=15Xx10"" kg, w,=4 MHz, and 7%,=0.25
X 10~*w, (equivalently, Q)= w;,/ y,=4 X 10*). For the other param-
eters, see Fig. 2.
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FIG. 6. (Color online) The final effective mean phonon number
nlf is plotted as a function of A for different quality factors of the
MR: Q,=4X10% 10°, 4X10°, and 10° (from up to down). The
corresponding damping rates are y,=100, 40, 10, and 4 Hz. Here,
T=10 mK. For the other parameters see, Fig. 5.

For an initial temperature of 7=10 mK as in Fig. 5, the
final mean phonon number would in principle be n., [Eq.
(16)], which is much less than that obtained in Fig. 5: n,,
=N+1?/4wj~0.0025<nj,~0.16. This is because nj—n,,
only when the condition in Eq. (19) is satisfied. Unfortu-
nately, it is not the case for the parameters in Fig. 5. A
possible way to approach this condition is to increase the
quality factor of the MR. In Fig. 6, the final effective mean
phonon number is plotted as a function of the effective de-
tuning A for different quality factors of MR Q, (=w,/y,):
Q0,=4>x10* (typically; see Ref. 44); Q,=10°, 4 X 10°, and
10° (expected in the near future). The corresponding minimal
n£~0.16, 0.6, 0.02, and 0.01. One can find that the cooling
is better for a higher quality factor of the MR.

The cooling discussed above can be measured by a homo-
dyne detection method like that given in the scheme of
cavity-assisted radiation-pressure cooling of a MR.32444749
The motion of the MR can be detected by monitoring the
output microwave signal (e.g., the field phase quadrature) of
the TLR (as seen in Fig. 1) since the measurement of the
output spectrum corresponds to a faithful measurement of
the MR motion.*’

V. CONCLUSION

We have found that a MR with frequency w,~2m
X 10° Hz can be cooled close to its ground state when it is
coupled to a typical TLR (w,~ 27X 10'° Hz). Actually, by
considering the optimal parameters in this scheme, that is,
assuming the high-quality cavity limit (k> < wi), a positive
optimal effective detuning (A= w,), a low initial temperature
(e.g., T=10 mK in order that N~ 10"2"=0), a high-quality
factor of the MR (Q,= w,/ ¥, = 10%), and both strong exter-
nal input microwave drive power P and strong capacitive-
coupling strength g, to get the significantly increased posi-
tive effective damping rate [y, < 5 (w,) = Y(w,)], we find
that resolved sideband cooling of the MR occurs. The pos-
sible minimal value of the final effective phonon number
could approach the induced mean phonon number, n£—>nm
~ k?/4w, < 1. Moreover, one should also consider the con-
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dition of weak-coupling limit; that is, the significantly in-
creased effective damping rate ;" (w,) should be less than
both w, and k [in the high-quality cavity limit, one only
needs yzf(wb)< k]. This condition requires that « must not
be too small, although lower « will lead to lower n.,. As
shown in Fig. 2 and its discussion, there will be an optimal
range of «. For the typical parameters in this cooling scheme,
we take xk~0.1w,, (although this is not the optimal result in
general). We find that a MR with w,=4 MHz can be cooled
close to its ground state with the final effective mean phonon
number in the steady state, n,~0.16 (for a typical quality
factor Qb 4% 10% or nj=~ 001 (for a high-quality factor
0,=10°, by using the resolved sideband cooling scheme
when it is coupled to a driven TLR (with the frequency w,
=8x10'° Hz).

We would like to stress the condition in Eq. (19), which
can lead to nZ—> n..- As pointed out in the discussion of Figs.
5 and 6, this is not always satisfied. A possible way to ap-
proach this condition is to increase the quality factor of the
MR. For example, if the quality factor of the MR is high
enough (eg Qb>10) one would have the optimal nf

=~ K /4w =0.0025, for which the MR is cooled much
closer to the ground state.

The back-action self-cooling scheme presented here is
similar to the optical-cavity-assisted cooling scheme.?33* In
both cases, the MR can be cooled close to its ground state
using resolved sideband cooling which is possible in the
limit of a high-quality cavity. But it seems that this limit
(e.g., k=0.1w), for w,=4 X 10° Hz) is easier to reach in the
microwave TLR than that in the optical cavity. In the case of
a TLR (typically w,=8 X 10'° Hz), quality factors of Q,
=w,/k=2X 10 have been seen in experiments.*’*> How-
ever, in the case of an optical cavity (w,~ 10> Hz), the
corresponding quality factor should be Q,=w,/k~2.5
X 10°, which is hard to achieve since the typical cavity qual-
ity factor is Q,~ 107-3.5°

To conclude, we have studied the self-cooling of a me-
chanical resonator that is capacitively coupled to a transmis-
sion line resonator. The discussion was based on a linearized
quantum Langevin equation. The cooling method presented
here is similar to the self-cooling of a MR coupled to an
optical cavity by radiation pressure. By using the optimal
parameters discussed above, the MR can be cooled close to
its ground state in the high-quality cavity and weak-coupling
limit.
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APPENDIX: EQUIVALENCE TO TIME-DEPENDENT
SECOND-ORDER PERTURBATION THEORY

The linearized quantum Langevin equations read

ox = ép/m, (Ala)
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QUANTUM THEORY OF TRANSMISSION LINE...

8p = — mw,dx — v,0p + hgo(da’(a) + Hee) + €,
(Alb)

i =—(k+iA)da+igya)dx+ \'Ecam. (Alc)

To solve these equations, we define the Fourier transform
for an operator u (u=da, x, p, ai,, and &)

1 A
u(t) := —f e'i(w)dw, A2)
( ol ) (
and for its Hermitian conjugate u" (if any)
. 1 -
u'(t) = :j e i (w)dw, (A3)
\\"277 —
which lead to
(@,(V)a,(w) = (N+1)5(Q - w), (A4)
-~ ho
(E(Q)éE(w)) = ﬁybmw<1 + coth )5(9 +w). (A5)
2UsT

After solving the linear quantum Langevin equations in
the frequency domain, we obtain

C*(— )iy + Clw)a@, + [(k + iw)? + A*]E

o) = B(w)
(A6a)
p(w) = iomdx(w), (A6b)

where B(w)=m(w§—w2+iybw)[(K+iw)2+Az]—2ﬁ|g0(a>|2A
and C(w)=fi\2kg(a) k+i(w+A)].

To calculate the effective temperature of the MR, we de-
fine the fluctuation spectra of position and momentum?3236-2
of the MR, which are given by the following correlation
function:

S(w)= f - e~ 8x(t + 1) Ox(1)) d, (A7)

Sy(w) = f e Sp(t+ 1) 5p(t))d. (A8)

Here, (...), denotes the steady-state average. Equivalently,
S, p(w) can also be defined as

PHYSICAL REVIEW B 78, 134301 (2008)

(1 Q) () = S (@) + w), (r=x,p). (A9)

According to Egs. (A6), the spectra of the MR can be
written as

Su(@) = | Xeri( @) P[Si(@) + Sea@) ], (A10)
Sy(@) = (0m)*S (), (Al1)

where
Sin(w) =hyymol1 + coth(hw/2kgT)] (A12)

is the thermal noise spectrum due to the Brownian motion of
the MR and

5 (oo W DIC@E+NCE )P

«“ |(k+iw)? + A%
D( + A% + 0?) + 20A
|(k+iw)? + A%

2N +
= 2ﬁ2|g0<a)|2k(

(A13)

is the induced noise spectrum due to the capacitive coupling
to the driven TLR. The effective susceptibility is defined as
Xer(@)=[(k+iw)?>+A%]/B(w) and can be simplified to

1

w) = , Al4
) 0 S
where the effective frequency of the MR is
() = \/(02 ~ 2h|go{a)PA(K? — w* + A?)
b b m|(k + iw)? + A%
2_ 2. A2
- +A
_ \/w,%— (€~ w : @ )
K

and the effective damping rate is Y5 (w)=y,+ Yeo(@) With
the additional term

4h|go(a)* kA
yca(w) =

= Al6
m|(k + iw)? + A% (A16)

resulting from the capacitive coupling.

According to the definition of the additional damping rate
in Eq. (A16), the induced noise spectrum S,,(w) in Eq. (A13)
can also be expressed as

K2+ A% + o

S =mh| (2N + 1
(@)=l QN+ 1)

+ 0 | Yoo(w).

(A17)
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